ar X iv : m at h / 01 03 07 5 v 1 [ m at h . R A ] 1 3 M ar 2 00 1 RESIDUE COMPLEXES OVER NONCOMMUTATIVE RINGS

نویسنده

  • JAMES J. ZHANG
چکیده

Residue complexes were introduced by Grothendieck in algebraic geometry. These are canonical complexes of injective modules that enjoy remarkable functorial properties (traces). In this paper we study residue complexes over noncommutative rings. These objects are even more complicated than in the commutative case, since they are complexes of bimodules. We develop methods to prove uniqueness, existence and functoriality of residue complexes. For a noetherian affine PI algebra over a field (admitting a noetherian connected filtration) we prove existence of the residue complex and describe its structure in detail.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 01 03 07 5 v 3 [ m at h . R A ] 3 J un 2 00 2 RESIDUE COMPLEXES OVER NONCOMMUTATIVE RINGS

Residue complexes were introduced by Grothendieck in algebraic geometry. These are canonical complexes of injective modules that enjoy remarkable functorial properties (traces). In this paper we study residue complexes over noncommutative rings. These objects have a more intricate structure than in the commutative case, since they are complexes of bimodules. We develop methods to prove uniquene...

متن کامل

ar X iv : m at h / 01 03 07 5 v 2 [ m at h . R A ] 1 8 Ju n 20 01 RESIDUE COMPLEXES OVER NONCOMMUTATIVE RINGS

Residue complexes were introduced by Grothendieck in algebraic geometry. These are canonical complexes of injective modules that enjoy remarkable functorial properties (traces). In this paper we study residue complexes over noncommutative rings. These objects have a more intricate structure than in the commutative case, since they are complexes of bimodules. We develop methods to prove uniquene...

متن کامل

ar X iv : m at h / 06 03 73 3 v 1 [ m at h . A C ] 3 1 M ar 2 00 6 RIGID COMPLEXES VIA DG ALGEBRAS

Let A be a commutative ring, B a commutative A-algebra and M a complex of B-modules. We begin by constructing the square SqB/A M , which is also a complex of B-modules. The squaring operation is a quadratic functor, and its construction requires differential graded (DG) algebras. If there exists an isomorphism ρ : M ≃ −→ SqB/A M then the pair (M,ρ) is called a rigid complex over B relative to A...

متن کامل

ar X iv : m at h - ph / 0 10 30 34 v 1 2 5 M ar 2 00 1 MZ - TH 01 - 09 LPT - ORSAY 01 - 28 MULTIPLE NONCOMMUTATIVE TORI

We derive the Kac-Paljutkin finite-dimensional Hopf algebras as finite fibrations of the quantum double torus and generalize the construction for quantum multiple tori.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001